Header image for the course page

Chemistry Courses

Special Topics in Inorganic Chemistry

Chemistry 542 - Fall 2019

Renewable sources of energy and hybrid vehicles have gained popularity due to the rising environmental crisis caused by the emission of greenhouse gases. Lucky for humans, both wind and solar energy can be captured, stored, and reused at a later time in order to power vehicles, portable electronics, and homes via electrochemical energy storage technologies. Furthermore, energy storage devices possessing extended cyclability capable of instantaneously delivering bursts of electricity, and featuring a high-power energy density, are ideal candidates for controlling interruptions in the transmission of electricity in grids. Not surprisingly, this field of study is very important to society and is the focus of research for a large and vibrant scientific community spanning globally across national laboratories, universities, and private industries. A key component that enables the development of state-of-the-art devices is the synthesis and application of nanostructured materials such as carbon allotropes, metal oxides, and conducting polymers. These nanostructured materials afford enhanced properties such as surface area, directional transport, and conductivity for increasing the efficiency of energy storage. This course will provide an introduction to current synthetic protocols and applications of nanostructured organic, inorganic, and composite materials typically utilized for storing energy. We will focus on the structure and property relationships that are desired for attaining state-of-the-art performance in both pseudocapacitive and capacitive materials. Material characterization via spectroscopy as well as via electrochemical techniques such as cyclic voltammetry, galvanostatic charge/discharge curves, and electrochemical impedance will be a focus during discussions. Current trends in engineering for device fabrication will also be explored in order to understand how to develop energy storage technologies characterized by both high power density and high energy d
Course Attributes:

Section 01

Special Topics in Inorganic Chemistry
INSTRUCTOR: D'Arcy
View Course Listing